电液动力学 - 喷射(电子喷射)印刷技术能够实现复杂软电子设备的高分辨率印刷。因此,它具有可比的电位,用于成为打印软电子设备的传统技术。在该研究中,研究了电子喷射印刷电路的电导率作为关键印刷参数的函数(喷嘴速度,墨水流量和电压)。然后使用收集的实验数据集来训练机器学习算法,以建立能够实时预测印刷电路特性的模型。比较精度参数以评估监督分类模型。由于决策树方法无法提高高于71%的准确性,因此在我们的数据集上执行更高级的算法,以提高模型的精度。根据F测量值,K-NN模型(K = 10)和随机森林是分类电极电导率的最佳方法。 Adaboost Ensemble学习的最高准确性导致了10-15棵树(87%)。
translated by 谷歌翻译
Designing a local planner to control tractor-trailer vehicles in forward and backward maneuvering is a challenging control problem in the research community of autonomous driving systems. Considering a critical situation in the stability of tractor-trailer systems, a practical and novel approach is presented to design a non-linear MPC(NMPC) local planner for tractor-trailer autonomous vehicles in both forward and backward maneuvering. The tractor velocity and steering angle are considered to be control variables. The proposed NMPC local planner is designed to handle jackknife situations, avoiding multiple static obstacles, and path following in both forward and backward maneuvering. The challenges mentioned above are converted into a constrained problem that can be handled simultaneously by the proposed NMPC local planner. The direct multiple shooting approach is used to convert the optimal control problem(OCP) into a non-linear programming problem(NLP) that IPOPT solvers can solve in CasADi. The controller performance is evaluated through different backup and forward maneuvering scenarios in the Gazebo simulation environment in real-time. It achieves asymptotic stability in avoiding static obstacles and accurate tracking performance while respecting path constraints. Finally, the proposed NMPC local planner is integrated with an open-source autonomous driving software stack called AutowareAi.
translated by 谷歌翻译
We outline our work on evaluating robots that assist older adults by engaging with them through multiple modalities that include physical interaction. Our thesis is that to increase the effectiveness of assistive robots: 1) robots need to understand and effect multimodal actions, 2) robots should not only react to the human, they need to take the initiative and lead the task when it is necessary. We start by briefly introducing our proposed framework for multimodal interaction and then describe two different experiments with the actual robots. In the first experiment, a Baxter robot helps a human find and locate an object using the Multimodal Interaction Manager (MIM) framework. In the second experiment, a NAO robot is used in the same task, however, the roles of the robot and the human are reversed. We discuss the evaluation methods that were used in these experiments, including different metrics employed to characterize the performance of the robot in each case. We conclude by providing our perspective on the challenges and opportunities for the evaluation of assistive robots for older adults in realistic settings.
translated by 谷歌翻译
In post-covid19 world, radio frequency (RF)-based non-contact methods, e.g., software-defined radios (SDR)-based methods have emerged as promising candidates for intelligent remote sensing of human vitals, and could help in containment of contagious viruses like covid19. To this end, this work utilizes the universal software radio peripherals (USRP)-based SDRs along with classical machine learning (ML) methods to design a non-contact method to monitor different breathing abnormalities. Under our proposed method, a subject rests his/her hand on a table in between the transmit and receive antennas, while an orthogonal frequency division multiplexing (OFDM) signal passes through the hand. Subsequently, the receiver extracts the channel frequency response (basically, fine-grained wireless channel state information), and feeds it to various ML algorithms which eventually classify between different breathing abnormalities. Among all classifiers, linear SVM classifier resulted in a maximum accuracy of 88.1\%. To train the ML classifiers in a supervised manner, data was collected by doing real-time experiments on 4 subjects in a lab environment. For label generation purpose, the breathing of the subjects was classified into three classes: normal, fast, and slow breathing. Furthermore, in addition to our proposed method (where only a hand is exposed to RF signals), we also implemented and tested the state-of-the-art method (where full chest is exposed to RF radiation). The performance comparison of the two methods reveals a trade-off, i.e., the accuracy of our proposed method is slightly inferior but our method results in minimal body exposure to RF radiation, compared to the benchmark method.
translated by 谷歌翻译
Emergence of deep neural networks (DNNs) has raised enormous attention towards artificial neural networks (ANNs) once again. They have become the state-of-the-art models and have won different machine learning challenges. Although these networks are inspired by the brain, they lack biological plausibility, and they have structural differences compared to the brain. Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain. However, their application in real-world and complicated machine learning tasks were limited. Recently, they have shown great potential in solving such tasks. Due to their energy efficiency and temporal dynamics there are many promises in their future development. In this work, we reviewed the structures and performances of SNNs on image classification tasks. The comparisons illustrate that these networks show great capabilities for more complicated problems. Furthermore, the simple learning rules developed for SNNs, such as STDP and R-STDP, can be a potential alternative to replace the backpropagation algorithm used in DNNs.
translated by 谷歌翻译
Machine learning algorithms have revolutionized different fields, including natural language processing, computer vision, signal processing, and medical data processing. Despite the excellent capabilities of machine learning algorithms in various tasks and areas, the performance of these models mainly deteriorates when there is a shift in the test and training data distributions. This gap occurs due to the violation of the fundamental assumption that the training and test data are independent and identically distributed (i.i.d). In real-world scenarios where collecting data from all possible domains for training is costly and even impossible, the i.i.d assumption can hardly be satisfied. The problem is even more severe in the case of medical images and signals because it requires either expensive equipment or a meticulous experimentation setup to collect data, even for a single domain. Additionally, the decrease in performance may have severe consequences in the analysis of medical records. As a result of such problems, the ability to generalize and adapt under distribution shifts (domain generalization (DG) and domain adaptation (DA)) is essential for the analysis of medical data. This paper provides the first systematic review of DG and DA on functional brain signals to fill the gap of the absence of a comprehensive study in this era. We provide detailed explanations and categorizations of datasets, approaches, and architectures used in DG and DA on functional brain images. We further address the attention-worthy future tracks in this field.
translated by 谷歌翻译
我们通过实验验证一个实时机器学习框架,能够控制拉曼放大器的泵功率值以在二维(2D)中塑造信号功率演变:频率和光纤距离。在我们的设置中,优化了四个一阶反向传输泵的功率值,以实现所需的2D功率配置文件。泵功率优化框架包括一个卷积神经网络(CNN),然后是差分进化(DE)技术,在线应用于放大器设置,以自动实现目标2D功率配置文件。可实现的2D配置文件的结果表明,该框架能够确保获得的最大绝对误差(MAE)(<0.5 dB)与获得的目标2D配置文件之间。此外,该框架在多目标设计方案中进行了测试,该方案的目标是在跨度结束时达到固定增益水平的2D配置文件,共同在整个光纤长度上进行最小的光谱游览。在这种情况下,实验结果断言,对于目标扁平增益水平的2D轮廓,当设置在泵功率值中不受物理限制时,DE获得的最大增益偏差小于1 dB。模拟结果还证明,有足够的泵功率可用,可以实现更高的目标增益水平的更好的增益偏差(小于0.6 dB)。
translated by 谷歌翻译
本文为基于MPC的基于MPC模型的增强学习方法的计划模块提出了一个新的评分功能,以解决使用奖励功能得分轨迹的固有偏见。所提出的方法使用折现价值和折扣价值提高了现有基于MPC的MBRL方法的学习效率。该方法利用最佳轨迹来指导策略学习,并根据现实世界更新其状态行动价值函数,并增强板载数据。在选定的Mujoco健身环境中评估了所提出方法的学习效率,以及在学习的模拟机器人模型中学习运动技能。结果表明,所提出的方法在学习效率和平均奖励回报方面优于当前的最新算法。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
比尼奎斯特(FTN)信号更快可以提高光谱效率(SE);然而,以高计算复杂性为代价,以消除引入的隔膜间干扰(ISI)。由ML在物理层(PHY)问题中取得成功的动机,在本文中,我们研究了ML在降低FTN信号传导的检测复杂性方面的使用。特别是,我们将FTN信号检测问题视为一项分类任务,其中接收的信号被视为属于所有可能类样本的一个未标记的类样本。如果我们使用一个偏离分类器,则所有可能的类样本的集合属于$ n $维空间,其中$ n $是传输块长度,具有巨大的计算复杂性。我们提出了一个低复杂分类器(LCC),该分类器(LCC)利用FTN信号的ISI结构来执行$ n_p \ ll n $ dimension空间中的分类任务。拟议的LCC由两个阶段组成:1)离线预先分类,该预先分类在$ n_p $二维空间中构建标记的类样品和2)在线分类,其中发生了接收样品的检测。提出的LCC也会扩展以产生软输出。仿真结果显示了拟议的LCC在平衡性能和复杂性方面的有效性。
translated by 谷歌翻译